## 253. Photochemische Reaktionen

42. Mitteilung [1]

# Photoisomerisierung von α, β-Epoxyketonen II Der sterische Verlauf der Umlagerung von 3-Oxo-4,5-oxido-Steroiden von H. Wehrli, C. Lehmann [2], T. Iizuka, K. Schaffner und O. Jeger

(14. X. 67)

In der vorangehenden Arbeit dieser Reihe [3] beschrieben wir die lichtinduzierte Isomerisierung von 3-Oxo-4, 5-oxido-Steroiden. Gesättigte und  $\Delta^1$ -ungesättigte Vertreter dieser Epoxyketon-Klasse (vgl. 1 und 4) werden dabei zu 3,5-Dioxo-10(5 $\rightarrow$ 4)*abeo*-Derivaten vom Typus 3 bzw. 6 umgelagert (Formelschema 1). Als photochemischer Primärschritt der Umwandlung der gesättigten Epoxyketone war die Spaltung des Oxidrings und Ausbildung von diradikalischen<sup>1</sup>) Primärprodukten des Typus 2 in Betracht gezogen worden [3] (vgl. dazu [4]). Die Umwandlung  $4 \rightarrow 6$  verdient besonderes Interesse, indem diese Reaktion selektiv bei der Einstrahlung im Bereich der kurzwelligen Absorptionsbande (d. h. mit 253,7-nm-Licht) ausgelöst wird. Bei der Anregung des längerwelligen  $n \rightarrow \pi^*$ -Übergangs (> 310 nm) ist das Ausgangsketon hingegen stabil<sup>2</sup>). Als mechanistische Alternative für den Primärprozess der Umlagerung  $4 \rightarrow 6$  war die Öffnung der 5,10-Bindung ( $4 \rightarrow 5$ ) nebst der Parallelen zur Oxidöffnung  $1 \rightarrow 2$  (vgl.  $4 \rightarrow 2[\Delta^1]$ ) erörtert worden<sup>3</sup>).



- Für neuere experimentelle Unterlagen, welche auf den Radikalcharakter der Epoxyketon-Umlagerung hinweisen, vgl. [5]. – Wir danken Herrn Prof. W. REUSCH, Michigan State University, für die Mitteilung dieser Resultate vor ihrer Veröffentlichung.
- <sup>2</sup>) Photoreaktionen von konjugierten Carbonylverbindungen, die von energetisch höheren Elektronenkonfigurationen als den tiefstliegenden angeregten Singlett- und Triplettzuständen ausgehen (d.h. Reaktionen, die schneller ablaufen als die interne Konversion zwischen Anregungszuständen gleicher Spin-Multiplizität), sind bisher nur in wenigen Fällen beschrieben worden; vgl. dazu [6]. Nachtrag bei der Korrektur (25. IX. 1967): vgl. auch [16].
- <sup>3</sup>) Vgl. [1] für eine mögliche Charakterisierung diradikalischer Zwischenstufen vom Typus 2 und 5.
- 4) Der Einfachheit halber werden die enolisiert vorliegenden  $\beta$ -Diketone 3, 6, 22, 28 und 29 lediglich in der nichtenolisierten Form gezeichnet.

Die vorliegende Abhandlung befasst sich mit den Resultaten der UV.-Bestrahlung der Epoxyketone 10, 13, 15, 16, 20 und 21 (Formelschema 3)<sup>5</sup>).

Die Herstellung dieser in der Literatur noch nicht beschriebenen Ketone erfolgte nach bekannten Methoden (Formelschema 2).



Formelschema 2. Herstellung der Epoxyketone 10, 13, 15, 16, 20 und 21

Die Reduktion von O-Acetyl-10 $\alpha$ -testosteron (7) [8] mit Natriumborhydrid, Epoxidierung des angefallenen Allylalkohols 8 mit Benzopersäure ( $\rightarrow$  9) und anschliessende Oxydation mit Chrom (VI)-oxid lieferte das Epoxyketon 10. Die sterische Anordnung des Oxidrings in 9 und 10 ist aus dem negativen COTTON-Effekt des Epoxyketons 10 [ $\Delta e_{max}^{800,5\,\text{nm}} = -2,97$ ]<sup>6</sup>) ersichtlich, der nur mit der 4 $\alpha$ , 5 $\alpha$ -Konfiguration vereinbar ist [9]. Das  $\Delta^{4;9,11}$ -ungesättigte Keton 17 [3] wurde basenkatalysiert mit Formaldehyd und Thiophenol umgesetzt<sup>7</sup>) und der resultierende Phenylthioläther 18 mit desaktiviertem RANEY-Nickel reduktiv zu 19 entschwefelt. Die Behandlung der beiden konjugierten 4-Methylketone 11 [11] und 19 mit Wasserstoffperoxid in alkalischer Lösung ergab jeweils quantitativ Gemische der entsprechenden diastereoisomeren Epoxyketonpaare 12/14 und 20/21, wobei im ersten Fall die 4 $\beta$ , 5 $\beta$ - (14) und im zweiten Fall die 4 $\alpha$ , 5 $\alpha$ -Komponente

<sup>7</sup>) Zur Methodik vgl. KIRK & PETROW [10].

<sup>&</sup>lt;sup>5</sup>) Ein Teil der hier beschriebenen Ergebnisse war bereits Gegenstand einer Kurzmitteilung [7], zu deren Zeitpunkt aber insbesondere die Konfiguration von C-4 der schon damals erhaltenen Photoprodukte 23 und 24 noch nicht feststand.

<sup>&</sup>lt;sup>6</sup>) Herrn PD Dr. G. SNATZKE, Universität Bonn, danken wir bestens für die Aufnahme der Circulardichrogramme.

(20) überwog. Die Verbindungen 12 und 14 wurden schliesslich zu den O-Acetylderivaten 13 bzw.
 15 verestert. Die Oxydation von 13 mit Selendioxid lieferte die 1-Dehydroverbindung 16.

Die Konfigurationszuteilung der 4-Methyl-epoxyketone erfolgte wiederum anhand der circulardichroitischen Daten<sup>6</sup>), welche für die nichtkonjugierten  $4\alpha, 5\alpha$ -Verbindungen 13 und 20 je einen negativen und für die  $4\beta, 5\beta$ -Stereoisomeren 15 und 21 je einen positiven Corron-Effekt zeigen (Tabelle). Erwartungsgemäss wies das konjugierte  $4\alpha, 5\alpha$ -Epoxyketon 16 einen positiven Wert auf. Überdies vermitteln die in der Tabelle zusammengestellten Differenzen zwischen den molaren Drehungsbeträgen von Ausgangsketonen und Oxidderivaten einerseits und zwischen den NMR.-Resonanzen der Methylprotonen an C-4' und C-19 innerhalb der diastereoisomeren Epoxyketon-Paare anderseits eine unabhängige Bestätigung der sterischen Zuordnungen.

| Verbindung                                                        | CD. der Epoxy-<br>ketone <sup>a</sup> ) <sup>b</sup> ) |                       | Molare Drehungsdifferenzen<br>zwischen den Epoxyketonen und<br>ihren ⊿ <sup>4</sup> -ungesättigten Vorläufern <sup>c</sup> ) |                                                |                                            | NMR.: Verschie-<br>bungsdifferenzen<br>der CH <sub>3</sub> (-19)-<br>Signale zwischen<br>$4\alpha$ , $5\alpha$ - und $4\beta$ , $5\beta$ -<br>Epoxyketonen <sup>d</sup> ) |
|-------------------------------------------------------------------|--------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   | $\lambda_{max}[nm]$                                    | Δε                    | [M] <sub>D</sub>                                                                                                             | $\varDelta[M]_D^{4\alpha,5\alpha-\varDelta^4}$ | $\Delta[M]_{D}^{4\beta,5\beta-\Delta^{4}}$ | $\overline{\Delta[\delta_{\mathrm{CH}_{\mathrm{s}}-19}]^{4\alpha,5\alpha-4\beta,5\beta}}$                                                                                 |
| 11 [11]<br>13<br>15                                               | -<br>305<br>310                                        | -<br>- 3,76<br>+ 3,32 | + 419°<br>- 169°<br>+ 379°                                                                                                   | - 588°                                         | – 40°                                      | - 0,12                                                                                                                                                                    |
| O-Acetyl-1-<br>dehydro-4-methy<br>testosteron [11 a]<br><b>16</b> |                                                        | -<br>+ 6,48           | + 205°)<br>- 358°                                                                                                            | - 563°                                         | -                                          | -                                                                                                                                                                         |
| 19<br>20<br>21                                                    | -<br>306<br>309,5                                      | -<br>- 3,84<br>+ 2,39 | + 139°<br>- 298°<br>+ 260°                                                                                                   | }−437°                                         | +121°                                      | -0,10                                                                                                                                                                     |

Sterische Klassifizierung der neuen 3-0x0-4,5-oxido-4-methyl-Steroide anhand physikalischer Daten

a) Dioxanlösung: Konzentrationen 0,49-1,15%.

<sup>b</sup>) Nichtkonjugierte 3-Oxo-4 $\alpha$ , 5 $\alpha$ -oxido-Steroide weisen einen negativen, ihre 4 $\beta$ , 5 $\beta$ -Stereoisomeren einen positiven Cotton-Effekt auf. 3-Oxo-4 $\alpha$ , 5 $\alpha$ -oxido- $\Delta^1$ -Steroide zeigen einen positiven Cotton-Effekt. Vgl. dazu [3] [9].

<sup>c)</sup> Die  $\Delta[\mathbf{M}]_D$ -Werte für 3-Oxo- $\Delta^4$ -Steroide und deren 4, 5-Oxidoderivate sowie den entsprechenden  $\Delta^1$ -Analoga betragen nach [3] [12]:  $\Delta[\mathbf{M}]_D^{\mathbf{4}\alpha,5\alpha-\Delta^4} = -414^\circ$  bis  $-622^\circ$   $\Delta[\mathbf{M}]_D^{\mathbf{4}^1,4\alpha,5\alpha-\Delta^1;4} = -415^\circ$  bis  $-456^\circ$  $\Delta[\mathbf{M}]_D^{\mathbf{4}\beta,5\beta-\Delta^4} = + 20^\circ$  bis  $+202^\circ$   $\Delta[\mathbf{M}]_D^{\mathbf{4}^1,4\beta,5\beta-\Delta^1;4} = +766^\circ$  bis  $+858^\circ$ 

d) Die betr. Differenzen der  $CH_3(-19)$ -Signale betragen nach [3] -0.07 bis -0.13 ppm.

1. UV.-Bestrahlungen. – Die im Formelschema 3 aufgeführten photochemischen Umsetzungen wurden durchwegs in präparativem Maßstab mit etwa  $10^{-2}-10^{-3}$  M Dioxanlösungen ausgeführt. Für das Epoxyketon 10 wurde das unfiltrierte Licht eines Quecksilber-Hochdruckbrenners ( $n \rightarrow \pi^*$ -Anregung) verwendet.

Für die restlichen Verbindungen mit nichtkonjugiertem Ketonchromophor (13, 15, 20 und 21) erwies es sich hingegen als vorteilhaft, das Licht eines Quecksilber-Niederdruckbrenners einzustrahlen, der im  $n \to \pi^*$ -Absorptionsbereich dieser Epoxyketone nur eine sehr geringe Intensität der Lichtemission aufweist (Emission bei 297-313 nm ca. 4% des 248-436-nm-Bereichs). Mit dieser Versuchsanordnung konnten photochemische Folgereaktionen der nicht enolisierbaren  $\beta$ -Diketone 23, 24, 26 und 27, die bei der Verwendung eines Hochdruckbrenners sehr rasch eintreten, besser vermieden werden. In jedem Fall war mit befriedigender Empfindlichkeit die spezifische Ausbildung von nur einem der beiden möglichen, an C-4 epimeren  $10(5 \rightarrow 4)$ *abeo*-Produkte nachweisbar. Das Fehlen der an C-4 mit dem jeweils isolierten  $\beta$ -Diketon epimeren Verbindung in den Reaktionsgemischen von 13, 15, 20 und 21 wurde mittels Dünnschichtchromatographie überprüft (Empfindlichkeit: ca.  $2^{0}/_{00}$ ). Das Produkt 22 liess sich dünnschichtchromatographisch nicht vom  $10\beta$ -Isomeren (vgl. 3[3]) differenzieren, doch konnte die Ausbildung der letzteren Verbindung aus 10 in mehr als 1-proz. Ausbeute auf Grund des NMR.-Spektrums der Mutterlauge von 22 ausgeschlossen werden.





Die Bestrahlung einer  $10^{-2}$ M Dioxanlösung des  $\alpha', \beta'$ -ungesättigten  $\alpha, \beta$ -Epoxyketons 16 mit überwiegend monochromatischem Licht der Wellenlänge 253,7 nm  $(\pi \rightarrow \pi^*$ -Anregung) lieferte in 73proz. Ausbeute das Umlagerungsprodukt 25. Bei einem Testversuch, in welchem selektiv der  $n \rightarrow \pi^*$ -Übergang von 16 durch Einstrahlung von Wellenlängen > 310 nm angeregt wurde, fand die Umlagerung in das  $\beta$ -Diketon 25 nicht statt, und die Verbindung 16 verblieb weitgehendst photostabil.

2. Strukturaufklärung der Photoprodukte. – Die Zuordnung der Struktur 22 für das Photoisomere von 10 wurde ausschliesslich auf Grund der Spektraldaten dieser Verbindung und gestützt auf die analoge Photoumlagerung des 10 $\beta$ -stereoisomeren Epoxyketons (vgl.  $1 \rightarrow 3$  [3]) getroffen. Die positive Eisen(III)-chlorid-Reaktion von 22 sowie die bathochrome Verschiebung des UV.-Absorptionsmaximums von 294 nm ( $\varepsilon = 8430$ ) nach 315 nm ( $\varepsilon = 11410$ ) beim Wechsel von neutraler Äthanollösung zu 0,01N äthanolischer Kaliumhydroxidlösung weisen auf das Vorliegen einer enolisierten Dicarbonyl-Teilstruktur hin. Die auffallend geringe Intensität der IR.-Banden dieser Gruppierung ( $v_{max} = 1610$ , 1656 cm<sup>-1</sup>) und die Verschiebung der Hydroxyl-Streckschwingung nach dem von den CH-Banden überdeckten Frequenzbereich um 2900 cm<sup>-1</sup> waren bereits für die  $\beta$ -Diketone des Typus 3 charakteristisch [3] und gestatten auch für 22 eine Differenzierung gegenüber einem enolisierten  $\alpha$ -Diketon mit nichtumgelagertem Steroidgerüst<sup>8</sup>).

Massenspektren der an C-10 stereoisomeren Verbindungen 3,5-Dioxo-17 $\beta$ -acetoxy-10(5  $\rightarrow$  4)-abeoandrostan [3] und 22<sup>4</sup>)



Der Befund, dass die Massenspektren von 3,5-Dioxo-17 $\beta$ -acetoxy-10(5  $\rightarrow$  4)-*abeo*androstan [3] und von **22** praktisch deckungsgleich sind (vgl. Figur), liefert schliesslich eine unabhängige starke Stütze für die mit der Vergleichssubstanz lediglich an C-10 epimere Struktur **22**<sup>9</sup>).

Die Konstitution der beiden Photoprodukte 24 und 27, nicht aber deren Konfiguration an C-4, war bereits in der vorangehenden Arbeit dieser Reihe [3] durch nichtphotolytische Partialsynthesen sichergestellt worden. Die strukturellen Zusammenhänge zwischen den bereits bekannten enolisierten  $\beta$ -Diketonen 28 und 29 [3] und den neuen Photoprodukten 23, 25 und 26 ergeben sich aus den folgenden Verknüpfungen

<sup>&</sup>lt;sup>8</sup>) 3-Oxo-4-hydroxy- $\Delta^4$ -Steroide weisen intensive Banden bei 1630, 1660 und 3460 cm<sup>-1</sup> auf [13].

<sup>9)</sup> Herrn PD Dr. J. SEIBL danken wir bestens für die Aufnahme und ausführliche Diskussion der Massenspektren.

Formelschema 4. Konstitutionsaufklärung der Photoprodukte 23, 25 und 264)



Formelschema 5. Der Konfigurationsbeweis für C-4 der Photoprodukte 26 und 27



(Formelschema 4): Die C(4)-Methylierung von 28 mit Methyljodid und Kalium-*t*butylat lieferte die Verbindung  $30^{10}$ ), die anschliessend zum ungesättigten Photoprodukt 25 acetyliert wurde. Das gesättigte Photoprodukt 23 wurde durch katalytische Hydrierung von 25 gewonnen. Eine analoge Umwandlung von 29 – Methylierung

## Formelschema 6. Raumformeln der Verbindungen 33, 35 und 36









B'





<sup>10</sup>) Die Methylierungen der  $\Delta^1$ -ungesättigten 3, 5-Diketone **28** und **29** einerseits und des entsprechenden gesättigten Analogons (3, 5-Dioxo-17 $\beta$ -hydroxy-17-methyl-10 (5  $\rightarrow$  4)-abeo-androstan) andrerseits sind durch eine bemerkenswert unterschiedliche Stereoselektivität gekennzeichnet: während **28** und **29** ausschliesslich die 4 $\beta$ -Methylprodukte **30** und **31** lieferten, wird im gesättigten Fall ebenso selektiv das 4 $\alpha$ -Methylprodukt gebildet [3] (vgl. zur Erläuterung die Partialformeln **3**- $\rightarrow$  **24**). zu **31** und Hydrierung – führte zum gesättigten Diketon **32**, welches auch durch die Hydrierung des Photoproduktes **26** an Platinkatalysator in Essigsäure und anschliessende Nachoxydation mit Chrom(VI)-oxid zugänglich war.

Dem Konfigurationsbeweis für C-4 der beiden Verbindungsreihen 24/27 und 23/25/26 wurden Modellbetrachtungen zugrunde gelegt, die erwarten liessen, dass 9a-Hydroxyderivate der beiden an C-4 epimeren Steroidgerüste aus sterischen Gründen in unterschiedlichem Masse zu einem Hemiketal-Ringschluss mit der Ketogruppe an C-5 befähigt sein sollten. So kann am DREIDING-Modell der 4α-Methyl-9α-hydroxy-Verbindung 33 (Formelschema 5) ein Abstand von ca. 2,9 Å zwischen dem 9α-Sauerstoffatom und dem 5-Carbonylkohlenstoffatom abgelesen werden, wenn die einzige für eine Hemiketal-Brückenbildung mögliche Ring-B-Konformation gewählt wird (siehe Raumformel A, Formelschema 6). Zudem stellt sich dabei eine dafür stereoelektronisch ungünstige, angenähert lineare Anordnung des Hydroxylsauerstoffs und der C=O-Gruppierung ein (A'). Demgegenüber liegt der 9a-Sauerstoff im Modell des 4β-Stereoisomeren 35 in der Konformation B praktisch senkrecht über der Carbonylebene ungefähr auf der Höhe des Carbonylkohlenstoffs  $(\mathbf{B}')$ , wobei der Abstand zu diesem lediglich ca. 1.9 Å beträgt. Es war demzufolge a priori zu erwarten, dass sich das  $9\alpha$ ,  $11\alpha$ -Dihydroxyderivat von **26** bevorzugt zur Hemiketalform **36** (= C) cyclisiert und dass das entsprechende Derivat von 27 in der offenen Form 33 (= A) verbleibt.

Die Oxydation von 27 mit Osmium(VIII)-oxid lieferte quantitativ das Dihydroxydiketon 33, welches bei der Acetylierung in Acetanhydrid-Pyridin bei 90° in das Mono-O-acetylderivat 34 übergeführt wurde. Aus 26 hingegen entstand bei der Behandlung mit Osmium(VIII)-oxid in ebenso hoher Ausbeute ein Gemisch, das sich auf Grund der NMR.-Analyse mehrheitlich aus zwei Komponenten, 35 und 37 bzw. deren Hemiketalformen 36 und 38, zusammensetzte. Die Behandlung dieses Gemisches mit Acetanhydrid-Pyridin bei 70° lieferte das Triacetoxy-keton 39 und das Diacetoxylacton 40 im Mengenverhältnis ca. 1:4. Die Struktur der Produkte 34, 39 und 40 wurde wie folgt abgeleitet: Der sterische Verlauf der Hydroxylierung der 9,11-Doppelbindungen von 26 und 27 ist bereits durch die katalytische Hydrierung dieser Verbindungen vorgezeichnet. Auf Grund der jeweils stercoselektiven Ausbildung der entsprechenden  $9\alpha$ H-Dihydroderivate (vgl.  $26 \rightarrow 32$  im Formelschema 4 sowie [3]) muss auch für die sterisch einheitlich erfolgenden Hydroxylierungen ein Angriff von der  $\alpha$ -Seite angenommen werden. Überdies wäre im Fall eines  $9\beta$ ,  $11\beta$ -Dihydroxy-Derivates von **26** eine zu  $37 \rightarrow 38$  analoge  $(11 \rightarrow 3)$ -Hemiketalbildung aus sterischen Gründen ausgeschlossen<sup>11</sup>). Die Zuordnung der Hydroxydiketon-Form für 34 und der Ketalform für 39 stützt sich auf die folgenden Argumente:

1. Die beiden Verbindungen **26** und **27** weisen je zwei Carbonyl-IR.-Banden von unterschiedlicher Intensität auf (**26**: 1690 (schwächer), 1745 cm<sup>-1</sup>; **27**: 1686 (schwächer), 1745 cm<sup>-1</sup> [3]). Beim Übergang **27**  $\rightarrow$  **34** blieben diese für das nichtenolisierte 3,5-Diketonsystem charakteristischen Banden unverändert bestehen. Die Bande bei 1747 cm<sup>-1</sup> in **34** ist dabei von der intensiveren Acetatschwingung bei 1722 cm<sup>-1</sup> ab gesetzt und die relativ schwache 1686-cm<sup>-1</sup>-Bande noch als deutliche Schulter erkenn-

<sup>&</sup>lt;sup>11</sup>) Eine differenzierte Tendenz zur  $(9 \rightarrow 5$ -)Hemiketalbildung liesse sich auch im Falle der  $9\beta$ ,  $11\beta$ -Isomeren von **33** und **35** auf Grund von Modellbetrachtungen ableiten, welche den oben für **33** und **35** besprochenen Argumenten analog sind. Dabei ergeben sich wiederum günstigere Verhältnisse für eine offene 5-Keto- $9\beta$ -hydroxy-Form in der  $4\alpha$ -Methyl-Reihe und für eine  $5\beta$ ,  $9\beta$ überbrückte Hemiketalform in der  $4\beta$ -Methyl-Reihe.

bar. Im Spektrum des aus **26** resultierenden Triacetoxyderivates hingegen fehlt die 1690-cm<sup>-1</sup>-Bande. Zwei intensive Schwingungen bei 1725 und 1735 cm<sup>-1</sup> sind den drei Acetoxygruppen und dem Fünfringketon von **39** zuzuordnen. Parallel mit diesem IR.-Befund und in Übereinstimmung mit der daraus abgeleiteten Konstitutionszuordnung verhalten sich auch die Intensitäten der UV.-Absorptionsmaxima der betreffenden Verbindungen. Die Extinktionskoeffizienten der gesättigten wie auch der  $\Delta^{0,11}$ -ungesättigten 3,5-Diketone in Dioxanlösung betragen durchwegs 43-49 (z. B. **23**:  $\varepsilon_{max}^{296 nm} = 46$ ; **24**:  $\varepsilon_{max}^{297 nm} = 47$ ; **26**:  $\varepsilon_{max}^{298 nm} = 49$ ; **27**:  $\varepsilon_{max}^{298 nm} = 43$ ). Offenbar setzen sich diese Werte praktisch additiv aus den Koeffizienten der  $n \to \pi^*$ -Übergänge der einzelnen Ketogruppen zusammen, wie dies aus den Daten der Diacetoxyketone **42** ( $\varepsilon_{max}^{288 nm} = 21$ ; Formelschema 7) und **44** ( $\varepsilon_{max}^{296 nm} = 27$ ) extrapoliert werden kann<sup>12</sup>). Die UV.-Absorption der Verbindung **34** ( $\varepsilon_{max}^{295 nm} = 47$ ) unterscheidet sich nun nicht wesentlich von derjenigen ihres Vorläufers **27**, während sie in **39** ( $\varepsilon_{max}^{295 nm} = 28$ ) auf ungefähr den halben Wert eines 3,5-Diketons reduziert ist und dem  $n \to \pi^*$ -Übergang des entsprechenden Fünfringketons (vgl. **44**) entsprechen dürfte.

Formelschema 7. Partielle Reduktion der Photoprodukte 23 und 24 mit Lithium-aluminium-tri-(t-butoxy)-hydrid



2. Dem Hauptprodukt, das bei der  $OsO_4$ -Oxydation und der anschliessenden Acetylierung von **26** anfällt, muss auf Grund der unten besprochenen Daten die Struktur **40** zugeordnet werden. Die reduktive Aufarbeitung der Osmylierungsprodukte erfolgte in durchwegs alkalischem Milieu (wässerige Natriumhydrogencarbonat-Natriumsulfit-Lösung). Die Bildung von **40** dürfte somit auf dem retroaldolartigen Zerfall **36**  $\rightarrow$  **37** beruhen und kann nicht etwa auf einen spontanen Lactonringschluss des entsprechenden 9-Hydroxy-5-carbonsäure-Derivates zurückgeführt werden, das durch eine  $\beta$ -Diketonspaltung von **35**, ausgelöst durch den Angriff eines externen Nucleophils am freien Cycloheptanon-Carbonyl, entstehen könnte. Die anschliessende Hemiketalbildung **37**  $\rightarrow$  **38** trägt nach Modellbetrachtung zur sterischen

<sup>&</sup>lt;sup>12</sup>) Die Herstellung der Diacetoxyketone **42** und **44** erfolgte durch partielle Reduktion der Diketone **23** bzw. **24** mit Lithium-aluminium-tri-*t*-butoxy-hydrid und anschliessende Acetylierung der angefallenen Hydroxyketone **41** und **43** im Acetanhydrid-Essigsäure-*p*-Toluolsulfonsäure-System. Als Parallele zur selektiven Reduktion des Cycloheptanon-Carbonyls von **24** vgl. die ebenso bevorzugte Ketalisierung dieser Ketogruppe in [3].

Entspannung der Molekel bei. Der Befund, dass unter denselben Bedingungen für die Aufarbeitung der  $OsO_4$ -Oxydationsrohgemische und die Acetylierung aus 26 nebst 39 mehrheitlich das Produkt eines Retroaldolzerfalls (40) und aus 27 ausschliesslich das *vic.*-Dihydroxyderivat 33 und kein Retroaldolisierungsderivat resultiert, ist als Beweis für das Vorliegen der Hemiketal-Teilstruktur in 36 zu werten.

Die Struktur von 40 wurde auf Grund der Entstehungsweise dieser Verbindung, ihrer Bruttoformel ( $C_{25}H_{36}O_7$ ) und der Spektraldaten abgeleitet. Im NMR.-Spektrum belegen insgesamt sechs 3-Protonensignale die Existenz einer sekundär gebundenen (Dublett bei 0,84  $\delta$ , Kopplungskonstante 7 Hz) und dreier tertiär gebundenen Methylgruppen (Singlette bei 1,03, 1,16 und 1,40  $\delta$ ) sowie von zwei Acetoxygruppen (Singlette bei 1.96 und 2.03  $\delta$ ). Das Fehlen von Signalen bei tieferen Feldstärken als  $4,3\delta$  weist auf die quaternäre Natur der beiden Acetat-Haftstellen hin. Die Verteilung der drei von den Acetoxygruppen nicht beanspruchten Sauerstoffatome in 40 auf ein  $\delta$ -Lacton mit quaternärem Carbinolkohlenstoff (C-9) und eine ätherartige Funktion (3, 11-Oxido-Teilstruktur) konnte anhand der IR.-, NMR.- und UV.-Daten festgelegt werden. Eine von der Acetat-IR.-Bande (1720 cm<sup>-1</sup>) abgesetzte Schulter bei 1745 cm<sup>-1</sup> kann der 8-Lactongruppierung zugeschrieben werden. Ein nur undeutlich strukturiertes, breites 1-Protonensignal bei ca. 4,1  $\delta$  ist der mit dem Äthersauerstoff substituierten CH(-11)-Gruppe zuzuordnen. Eine alternative Konstitutionsformel wie z.B. das O-Acetylderivat des Hydroxyketons 37, der tautomeren Form des Hemiketalvorläufers (38) von 40, ist durch die hohe Feldstärke des CH(-11)-Signals im NMR. sowie durch das Fehlen der  $n \rightarrow \pi^*$ -UV.-Absorption eines Fünfringketons im Wellenlängengebiet oberhalb 250 nm ausgeschlossen.

**3.** Diskussion. – Die  $10(5 \rightarrow 4)$ -Umlagerung der an C-4 nicht methylierten 3-Oxo-4,5-oxido-Steroide war in der vorangegangen Arbeit [3] durch eine homolytische, reversible Oxidringöffnung (vgl.  $1 \rightarrow 2$ ) und anschliessende 1,2-Alkylwanderung

Formelschema 8. Der Umlagerungsverlauf der Epoxyketone 10, 13 und 15



 $(2 \rightarrow 3)$  unter Wahrung einer grösstmöglichen Orbitalüberlappung der drei an der Umlagerung beteiligten Zentren (C-4, -5 und -10) formuliert worden. Der Vorschlag, dass die  $10(5 \rightarrow 4)$ -Alkylwanderung im Fall der 3-Oxo-4,5-oxido-Steroide unter Umgehung von Zwischenstufen mit freien Alkylradikalstellen abläuft, stützte sich auf Modellbetrachtungen sowie die beobachtete Selektivität des Reaktionsverlaufs in dieser Substratreihe (vgl. [4] für zusätzliche Beispiele bei 1, 2-Oxido-3-oxo-Steroiden). So erfolgt die Umlagerung in zum Teil sehr gespannte Systeme auch dann ausschliesslich nach den obgenannten Kriterien, wenn alternative Umlagerungsvarianten zu energieärmeren Produkten unter vollständiger Dissoziation in intermediäre Alkylradikale bestehen. Die Bestrahlung der Epoxyketone 10, 13, 15, 20 und 21 wurde in der vorliegenden Arbeit unternommen, um den sterischen Verlauf der Photoumlagerung bezüglich der asymmetrisch substituierten Reaktionszentren C-4 und C-10 zu untersuchen. Die schon früher in vorläufiger Form publizierten Befunde [7] der Konfigurations retention an C-10 in  $10 \rightarrow 22$  und des stereospezifischen Reaktionsverlaufs in  $13 \rightarrow 23$  und  $15 \rightarrow 24$  waren mit dem bereits in [3] postulierten Reaktionskonzept vereinbar (vgl. dazu Formelschema 8). Die hier erbrachten Strukturbeweise für 23, 24, 26 und 27 bestätigen nun noch die Gültigkeit der sterischen Voraussagen bezüglich der Konfiguration von C-4 in den betreffenden Photo- $\beta$ -diketonen<sup>13</sup>).

Die Umlagerung des  $\Delta^1$ -ungesättigten Epoxyketons 16 erfolgte wiederum ausschliesslich bei der Einstrahlung von Licht der Wellenlänge 253,7 nm, wie dies schon nach dem analogen Verhalten des nicht methylierten Vertreters (vgl. 4 [3]) erwartet werden konnte. Das sterische Ergebnis der Umlagerung 16  $\rightarrow$  25 steht mit beiden mechanistischen Hypothesen [3] – der in Anlehnung an die gesättigte Parallele (Formelschema 8: 13  $\rightarrow$  46  $\rightarrow$  47  $\rightarrow$  23) formulierbaren primären Oxidspaltung (vgl. 4  $\rightarrow$  2[ $\Delta^1$ ]) sowie der im Formelschema 9 wiedergegebenen Schrittfolge (vgl. 4  $\rightarrow$  5) – im Einklang<sup>14</sup>).

<sup>14</sup>) Die Umsetzung von a mit Licht der Wellenlänge 253,7 nm in Tri-(n-butyl)-stannan-haltiger Benzollösung liefert u. a. das 5, 10-seco-Produkt b [1]. Es wird gegenwärtig untersucht, wie weit dieses Ergebnis auf eine bimolekulare Wasserstoffabstraktion als primäre Photoreaktion oder auf eine Wasserstoffaddition an ein Primärprodukt der Epoxyketon-Umlagerung vom Typus 5 zurückzuführen ist.



Die Umlagerung von Epoxylradikalen zu  $\alpha$ -Ketoradikalen scheint erst durch erhöhte Reaktionstemperaturen begünstigt zu werden [14]. Daraus darf zwar nicht ohne weiteres auf eine ebenfalls geringe Umlagerungstendenz des hypothetischen Primärproduktes 49 zu 50 bei der bei Zimmertemperatur durchgeführten Photolyse von 16 geschlossen werden. Immerhin ist es aber denkbar, dass als Konkurrenzreaktion zu  $49 \rightarrow 50 \rightarrow 25$  die Umkehr des Photoprozesses (d.h.  $49 \rightarrow 16$ ) ins Gewicht fallen und damit zu einer Reduktion der Quantenausbeute des Umsatzes  $16 \rightarrow 25$  führen könnte (vgl. [3] [5] für ähnliche Verhältnisse bei der Umlagerung gesättigter Epoxyketone).

<sup>&</sup>lt;sup>13</sup>) Die weitgehend synchrone Natur der Umlagerung via Übergangszustände vom Typus 45, 46 und 48 dürfte schon durch die strukturell dafür besonders prädestinierten Verhältnisse der untersuchten Steroidsysteme begünstigt werden. In einem von REUSCH [5] photolysierten monocyclischen β-Benzyl-α, β-epoxyketon wirken die strukturellen Faktoren hingegen zugunsten einer mindestens teilweisen Einschaltung eines Radikalpaar-Zwischenproduktes, das zur Freisetzung von Benzylradikal führte.

Formelschema 9. Der Umlagerungsverlauf des Epoxyketons 16 unter C(5, 10)-Primärspaltung



Die Ausführung dieser Arbeit wurde durch die Unterstützung seitens des Schweiz. NATIONAL-FONDS ZUR FÖRDERUNG DER WISSENSCHAFTLICHEN FORSCHUNG (Projekte Nr. 2839 und 3816) und der CIBA AKTIENGESELLSCHAFT, Basel, ermöglicht. T.I. dankt zudem der GEIGY JUBILÄUMS-STIFTUNG, Basel, für ein Stipendium.

### **Experimenteller** Teil

Die Aufarbeitung der Reaktionsgemische erfolgte im allgemeinen durch Aufnahme in Äther oder Äthylacetat, Waschen der organ. Phase mit  $H_2O$  bis zum Neutralpunkt und Eindampfen der über Na<sub>2</sub>SO<sub>4</sub> oder MgSO<sub>4</sub> getrockneten Lösung im Rotationsverdampfer. Falls nicht anders erwähnt, erfolgten die Kristallisationen aus Aceton-Hexan. Identifikationen beruhen auf Misch-Smp. und dem Vergleich von IR.-Spektren und Dünnschichtchromatogrammen.

Für die präparative Säulenchromatographie wurde Kieselgel MERCK (Korngrösse 0,05–0,2 mm) eingesetzt, soweit nicht nähere Angaben im Text stehen. Für die Dünnschichtchromatographie (DS.) diente Kieselgel G (MERCK). Nachweis der Substanzflecke: Besprühen der getrockneten Kieselgelschicht mit konz.  $H_2SO_4$  und anschliessendes Erhitzen der Platten.

Die *Smp*. sind nicht korrigiert und wurden in offenen Kapillaren im Ölbad bestimmt. Die  $[\alpha]_D$ -Werte wurden durch Extrapolation aus den spcz. Drehwerten bei 365, 405, 436, 546 und 578 nm bestimmt. Die Konzentrationen (c) sind in Klammern angefügt (CHCl<sub>3</sub>-Lösung, 5-cm-Rohr).

 $UV.-Spektren: C_2H_5OH-Lösung oder nähere Angahen im Text; \lambda_{max} sind in nm angegeben und <math>\epsilon$ -Werte in Klammern angefügt.

Circulardichrogramme (CD.)<sup>6</sup>): Dioxan-Lösung.

IR.-Spektren: CHCl<sub>3</sub>-Lösung;  $\nu_{max}$  in cm<sup>-1</sup>.

NMR.-Spektren: CDCl<sub>3</sub>-Lösung; 60 oder 100 MHz. Die Lage der Signale ist in  $\delta$ -Werten angegeben, bezogen auf internes (CH<sub>3</sub>)<sub>4</sub>Si ( $\delta = 0$ ). Abkürzungen: s (Singlett), d (Dublett), q (Quadruplett), b (breites, undeutlich strukturiertes Signal), J (Kopplungskonstante in Hz). Die durch elektronische Integration ermittelte Protonenzahl für die einzelnen Signale stimmt mit den jeweils angefügten Zuordnungen überein.

A. Herstellung der Epoxyketone 10, 13, 15, 16, 20 und 21 (Formelschema 2).  $-3\xi$ -Hydroxy-17β-acetoxy-Δ<sup>4</sup>-10α-androsten (8) <sup>15</sup>). 1 g O-Acetyl-10α-testosteron (7) [8] in 100 ml CH<sub>3</sub>OH wurde 30 Min. bei Zimmertemperatur mit 1 g NaBH<sub>4</sub> in 10 ml H<sub>2</sub>O reduziert: 851 mg 8, Smp. 207-208° (1× krist.). [α]<sub>D</sub> = -133° (0,63). IR.: 1260, 1665, 1725, 3620. NMR.: 0,75/s CH<sub>3</sub>-18, 1,14/s CH<sub>3</sub>-19, 2,06/s 17-OCOCH<sub>3</sub>, 4,20/b CH-3, ca. 4,6/b CH-17, 5,37/b (Halbwertsbreite ~5 Hz) CH-4. C<sub>21</sub>H<sub>32</sub>O<sub>3</sub> Ber. C 75,86 H 9,70% Gef. C 76,11 H 9,86%

 $3\xi$ -Hydroxy- $4\alpha$ ,  $5\alpha$ -oxido-17  $\beta$ -acetoxy- $10\alpha$ -androstan (9)<sup>15</sup>). 800 mg 8 wurden 3 Tage in 40 ml CHCl<sub>3</sub> bei Zimmertemp. mit ca. 2 g Benzopersäure oxydiert. Darauf nahm man in Äther auf und wusch die organ. Phase nacheinander mit wässerigen Lösungen von KJ und Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, mit H<sub>2</sub>O, 2 N eiskalter NaOH und H<sub>2</sub>O: 540 mg 9, Zers. bei 175–179° (1× krist.).  $[\alpha]_D = -65°$  (1,04). IR.: 1258, 1722, 3590. NMR.: 0,77/s CH<sub>3</sub>-18, 1,07/s CH<sub>3</sub>-19, 2,07/s 17-OCOCH<sub>3</sub>, 3,08/b (Halbwertsbreite ~4 Hz) CH-4, ca. 4,0/b CH-3, ca. 4,6/b CH-17.

C<sub>21</sub>H<sub>32</sub>O<sub>4</sub> Ber. C 71,96 H 9,78% Gef. C 71,92 H 9,69%

<sup>&</sup>lt;sup>15</sup>) Die physikalischen Daten dieser Verbindung wurden bereits in der vorläufigen Mitteilung [7] kurz erwähnt.

3-Oxo-4α, 5α-oxido-17β-acetoxy-10α-androstan (10) <sup>16</sup>). Eine Aufschlämmung von 480 mg 9 und 500 mg CrO<sub>3</sub> in wenig Pyridin wurde über Nacht bei Zimmertemperatur gehalten. Filtration des Rohproduktes in CH<sub>2</sub>Cl<sub>2</sub> durch neutrales Al<sub>2</sub>O<sub>3</sub> (Akt. III) und Kristallisation lieferte 380 mg 10, Smp. 149–151°.  $[\alpha]_D = -127°$  (0,80). CD.:  $\Delta \varepsilon_{max}^{300,5} mm = -2,97$ . IR.: 1255, 1705–1730 (breit). NMR.: 0.75/s CH<sub>3</sub>-18, 1,27/s CH<sub>3</sub>-19, 2,06/s 17-OCOCH<sub>3</sub>, 2,97/d/J<sub>4,x</sub> = 1 CH-4, ca. 4,65/b CH-17. C<sub>21</sub>H<sub>30</sub>O<sub>4</sub> Ber. C 72,80 H 8,73% Gef. C 72,90 H 8,75%

*Epoxidierung von 4-Methyltestosteron* (11) [11]. 2g 11 wurden in 60 ml CH<sub>3</sub>OH unter Rühren gleichzeitig mit 12 ml 30-proz. H<sub>2</sub>O<sub>2</sub> und 4 ml 4 N NaOH versetzt und 24 Std. bei Zimmertemp. belassen. Chromatographie des Rohproduktes (2 g)<sup>16</sup>) an der 50-fachen Menge neutralem Al<sub>2</sub>O<sub>3</sub> (Akt. II) ergab mit Benzol-Äther-(9:1) zuerst 440 mg 3-Oxo-4 $\alpha$ , 5 $\alpha$ -oxido-4-methyl-17 $\beta$ -hydroxy-androstan (12)<sup>15</sup>), Smp. 179–180° (3 $\times$  krist.). [ $\alpha$ ]<sub>D</sub> = -48° (0,72). IR.: 1698, 3610.

Spätere Benzol-Äther-(9:1)-Fraktionen enthielten 760 mg 3-0xo-4 $\beta$ , 5 $\beta$ -oxido-4-methyl-17 $\beta$ -hydroxy-androstan (14)<sup>15</sup>), Smp. 179-180° (3 $\times$  krist.). [ $\alpha$ ]<sub>D</sub> = +103° (1,08). IR.: 1700, 3615.

Die Acetylierung von 12 und 14 mit Acetanhydrid-Pyridin-(1:1) bei Zimmertemperatur lieferte quantitativ:

1. Aus 12:  $3-Oxo-4\alpha, 5\alpha-oxido-4-methyl-17\beta$ -acetoxy-androstan (13)<sup>15</sup>), Smp. 157–158° (3× krist.).  $[\alpha]_{\rm D} = -47^{\circ}$  (0,89). CD.: siehe Tabelle. UV.: 300 (30, in Dioxan). IR.: 1255, 1698, 1715. NMR.: 0,85/s CH<sub>3</sub>-18, 1,05/s CH<sub>3</sub>-19, 1,42/s 4-CH<sub>3</sub>, 2,06/s 17-OCOCH<sub>3</sub>, ca. 4,65/b CH-17.

2. Aus 14: 3-Oxo-4 $\beta$ , 5 $\beta$ -oxido-4-methyl-17 $\beta$ -acetoxy-androstan (15)<sup>15</sup>). Smp. 183–184° (3× krist.). [ $\alpha$ ]<sub>D</sub> = +95° (1,10). CD.: siehe Tabelle. UV.: 304 (26, in Dioxan). IR.: 1254, 1705, 1718. NMR.: 0,84/s CH<sub>3</sub>-18, 1,17/s CH<sub>3</sub>-19, 1,47/s 4-CH<sub>3</sub>, 2,06/s 17-OCOCH<sub>3</sub>, ca. 4,65/b CH-17.

 $C_{22}H_{32}O_4$  Ber. C 73,30 H 8,95% Gef. C 73,27 H 8,88%

3-Oxo-4 $\alpha$ , 5 $\alpha$ -oxido-4-methyl-17 $\beta$ -acetoxy- $\Delta^{1}$ -androsten (16). 1,4 g 13 wurden 24 Std. in einem siedenden t-Butanol-CH<sub>3</sub>COOH-(9:1)-Gemisch mit 2 g SeO<sub>2</sub> dehydriert. Die Reaktionslösung wurde filtriert und das Filtrat im Vakuum eingedampft. Die Äthylacetat-Lösung des Rückstandes wusch man nacheinander mit verd. wässerigen Lösungen von NaHCO<sub>3</sub>, NH<sub>4</sub>HS, NH<sub>3</sub> und H<sub>2</sub>SO<sub>4</sub> und mit H<sub>2</sub>O. Chromatographie des Rohproduktes (1,35 g) mit Benzol-Äther-(9:1): 1,03 g 16, Smp. 148° (2× krist.). [ $\alpha$ ]<sub>D</sub> = -100° (0,65). CD.: siehe Tabelle. UV.: 225 (9900). IR.: 1255, 1675, 1720. NMR.: 0,87/s CH<sub>3</sub>-18, 1,15/s CH<sub>3</sub>-19, 1,50/s 4-CH<sub>3</sub>, 2,07/s 17-OCOCH<sub>3</sub>, ca. 4,7/b CH-17, 5,88+6,77/2  $d/J_{1,2} = 11$  CH-2 und -1.

3-Oxo-4-phenylthiomethyl-17 $\beta$ -acetoxy-17-methyl- $\Delta^{4;9,11}$ -androstadien (18). 3 g 3-Oxo-17 $\beta$ -acetoxy-17-methyl- $\Delta^{4;9,11}$ -androstadien (17) [3] wurden in 20 ml C<sub>2</sub>H<sub>5</sub>OH und 2 ml (CH<sub>3</sub>)<sub>3</sub>N gelöst und 7 Tage in der Siedehitze mit 5 g C<sub>6</sub>H<sub>5</sub>SH und CH<sub>2</sub>O (in 2 ml 38proz. wässeriger Lösung) kondensiert<sup>7</sup>). Dann wurde auf eiskalte 2 N NaOH gegossen und aufgearbeitet. Das ölige Rohprodukt wurde direkt zu 19 weiterverarbeitet.

3-0xo-4,17-dimethyl-17 $\beta$ -acetoxy- $\Delta^{4;9,11}$ -androstadien (19). Das aus 3 g 17 erhaltene ölige 18 wurde 4 Std. in 200 ml sied. Aceton mit einem grossen Überschuss an RANEY-Ni behandelt, das vorher durch  $3 \times$  Waschen mit Aceton und 30min. Erhitzen in Aceton desaktiviert worden war. Das Ni wurde darauf abfiltriert, das Filtrat im Vakuum eingedampft und der Rückstand in CH<sub>2</sub>Cl<sub>2</sub> durch neutrales Al<sub>2</sub>O<sub>3</sub> (Akt. III) filtriert: 1,942 g 19, Smp. 129–130° (3× krist.). [ $\alpha$ ]<sub>D</sub> = + 39° (0,48). UV.: 251 (16100). IR.: 1262, 1602, 1653, 1717. NMR.: 0,92/s CH<sub>3</sub>-18, 1,34/s CH<sub>3</sub>-19, 1,42/s 17-CH<sub>3</sub>, 1,77/d/J = 1 4-CH<sub>3</sub>, 2,00/s 17-OCOCH<sub>3</sub>, ca. 5,55/b CH-11.

C<sub>23</sub>H<sub>32</sub>O<sub>3</sub> Ber. C 77,49 H 9,05% Gef. C 77,40 H 9,03%

<sup>&</sup>lt;sup>16</sup>) Das Rohprodukt der Epoxidierung von 11 setzte sich aus ca. 1 Teil 12 und 2 Teilen 14 zusammen, wie dies aus der DS.-Analyse des Rohgemisches (je ein Fleck für 12 und 14, kein Ausgangsmaterial) und aus dem [α]<sub>D</sub>-Wert von + 46° (1,53) einer Probe hervorgeht, die direkt acetyliert (→ 13+15) und im Vakuum sublimiert worden war.

*Epoxidierung von* **19**. 12 g **19** wurden in 450 ml  $CH_3OH-CH_2Cl_2-(2:1)$  gelöst und bei  $-15^{\circ}$  unter Rühren gleichzeitig mit 48 ml 30proz.  $H_2O_2$  und 16 ml 4 N NaOH versetzt. Nach 48stdg. Rühren bei Zimmertemp. wurde aufgearbeitet und das Rohprodukt in  $CH_2Cl_2$  durch neutrales  $Al_2O_3$ (Akt. III) filtriert. Das krist. Gemisch wurde in Benzol gelöst und mit Petroläther 6,7 g Kristalle ausgefällt, die mehrheitlich aus **20** bestanden, während der krist. Rückstand (5,7 g) der Mutterlauge vorwiegend **21** enthielt. Beide Fraktionen wurden durch Kristallisationen weiter gereinigt:

 $3-Oxo-4\alpha, 5\alpha-oxido-4, 17$ -dimethyl-17 $\beta$ -acetoxy- $\Delta^{9, 11}$ -androsten (20), Smp. 213–214° (3× krist.).  $[\alpha]_{D} = -80^{\circ}$  (0,99). CD.: siehe Tabelle. UV.: 293 (41, in Dioxan). IR.: 1265, 1710 (Schulter), 1725. NMR.: 0,82/s CH<sub>3</sub>-18, 1,20/s CH<sub>3</sub>-19, 1,42+1,45/2 s 4- und 17-CH<sub>3</sub>, 2,00/s 17-OCOCH<sub>3</sub>, ca. 5,6/b CH-11.

$$C_{23}H_{32}O_4$$
 Ber. C 74,16 H 8,66% Gef. C 74,04 H 8,61%

3-Oxo-4 $\beta$ , 5 $\beta$ -oxido-4, 17-dimethyl-17 $\beta$ -acetoxy- $\Delta^{9, 11}$ -androsten (21), Smp. 112–113° (3× krist. aus Hexan). [ $\alpha$ ]<sub>D</sub> = +70° (1,26). CD.: siehe Tabelle. UV.: 303 (28, in Dioxan). IR.: 1265, 1700 bis 1730 (breit). NMR.: 0,80/s CH<sub>3</sub>-18, 1,30/s CH<sub>3</sub>-19, 1,43/s 4- und 17-CH<sub>3</sub>, 2,00/s 17-OCOCH<sub>3</sub>, ca. 5,5/b CH-11.

C23H32O4 Ber. C 74,16 H 8,66% Gef. C 74,18 H 8,63%

**B. UV.-Bestrahlungen (Formelschema 3).** – Falls nicht anders vermerkt, erfolgten die Bestrahlungen in präparativem Maßstab wie folgt: Die Reaktionslösungen wurden in zylindrischen Gefässen bei Zimmertemperatur unter N<sub>2</sub>-Atmosphäre mit einem Magnetrührer durchgemischt. Lichtquellen: A) Hg-Hochdruckbrenner Q 81 (70 Watt), B) Hg-Niederdruckbrenner NK 6/20 (20 Watt; relative spektrale Energieverteilung u. a. 254 nm: 100, 297 nm: 0,6, 302 nm: 0,4, 313 nm: 2,8), beide QUARZLAMPEN GMBH., Hanau. Die Brenner waren zentral in einem wassergekühlten Quarzfinger angeordnet. Die bestrahlten Lösungen wurden jeweils im Rotationsverdampfer eingedampft und der Rückstand direkt an Kieselgel chromatographiert.

3-Oxo-4α, 5α-oxido-17β-acetoxy-10α-androstan (10). Ansatz: 250 mg 10 in 50 ml Dioxan; Bestrahlungsdauer: 45 Min. mit Brenner A. Chromatographie an Kieselgel, das zwecks Fe-Entfernung nacheinander mit 5 N HCl und H<sub>2</sub>O gewaschen und bei 140° reaktiviert worden war, mit Benzol-Äther-(9:1): 131 mg 3,5-Dioxo-17β-acetoxy-10(5  $\rightarrow$  4)-abeo-10α-androstan (22)<sup>15</sup>)<sup>17</sup>), Smp. 123-125° (2× krist. aus CH<sub>3</sub>OH). [α]<sub>D</sub> = -125° (0,80). UV.: 294 (8430); 315 (11400, in 0,01N KOH/C<sub>2</sub>H<sub>5</sub>OH). IR.: 1256, 1610, 1656, 1722. NMR.: 0,77/s CH<sub>3</sub>-18, 1,21/s CH<sub>3</sub>-19, 2,07/s 17-OCOCH<sub>3</sub>, ca. 4,65/b CH-17. MS.: siehe Figur.

3-Oxo-4 $\alpha$ , 5 $\alpha$ -oxido-4-methyl-17 $\beta$ -acetoxy-androstan (13). Ansatz: 360 mg 13 in 150 ml Dioxan; Bestrahlungsdauer: 20 Std. mit Brenner *B* (direkt eingetaucht, ohne Quarzfinger). Das Rohgemisch enthielt nach DS. [Fliessmittelsystem: Benzol-Äthylacetat-(4:1)] kein 24. Chromatographie mit Benzol-Äther-(9:1): 124 mg 13; mit Benzol-Äther-(4:1): 50 mg 3,5-Dioxo-4 $\beta$ -methyl-17 $\beta$ acetoxy-10(5 $\rightarrow$ 4)-abeo-androstan (23)<sup>15</sup>), Smp. 128–129° (3 $\times$  krist.). [ $\alpha$ ]<sub>D</sub> = +13° (0,59). UV.: 296 (46, in Dioxan). IR.: 1255, 1684 (schwach), 1725, 1741. NMR.: 0,80/s CH<sub>3</sub>-18, 1,07+1,33/2 s CH<sub>3</sub>-19 und 4-CH<sub>3</sub>, 1,99/s 17-OCOCH<sub>3</sub>, ca. 4,6/b CH-17.

$$C_{22}H_{32}O_4$$
 Ber. C 73,30 H 8,95% Gef. C 73,03 H 8,93%

3-Oxo-4 $\beta$ , 5 $\beta$ -oxido-4-methyl-17 $\beta$ -acetoxy-androstan (15). Ansatz: 1,75 g 15 in 230 ml Dioxan; Bestrahlungsdauer: 12 Std. mit Brenner *B* (direkt eingetaucht, ohne Quarzfinger). Das Rohgemisch enthielt nach DS. [Fliessmittelsystem: Benzol-Äthylacetat-(4:1)] kein 23. Chromatographie mit Benzol-Äther-(9:1): 1,292 g 15; mit Äther und Äther-Äthylacetat-(9:1): 141 mg 3,5-Dioxo- $4\alpha$ -methyl-17 $\beta$ -acetoxy-10 (5  $\rightarrow$  4)-abeo-androstan (24)<sup>15</sup>), Smp. 191–192° (2× krist.). [ $\alpha$ ]<sub>D</sub> = -68° (1,05). UV.: 297 (47, in Dioxan). IR.: 1253, 1687 (schwach), 1722, 1746. NMR.: 0,83/s CH<sub>3</sub>-18, 0,96+1,39/2 s CH<sub>3</sub>-19 und 4-CH<sub>3</sub>, 2,06/s 17-OCOCH<sub>3</sub>, ca. 4,65/b CH-17.

C<sub>22</sub>H<sub>32</sub>O<sub>4</sub> Ber. C 73,30 H 8,95% Gef. C 73,01 H 8,92%

<sup>&</sup>lt;sup>17</sup>) Die Nomenklatur dieses enolisiert vorliegenden β-Diketon-Photoproduktes bezieht sich auf dessen nichtenolisierte Form.

3-Oxo-4 $\alpha$ ,  $5\alpha$ -oxido-4-methyl-17 $\beta$ -acetoxy- $\Delta^1$ -androsten (16). – a) Analytische Versuche mit Brenner A und B. Anstelle der eingangs beschriebenen Versuchsanordnung wurden je 17 mg 16 in 5 ml Dioxan in Quarzröhrchen (Durchmesser 1 cm), die extern zu den Lichtquellen angeordnet waren, 5 Std. (Brenner A) bzw. 3 Std. (Brenner B) bestrahlt. Für den Brenner A wurde dabei ein mit 5proz. Kaliumhydrogenphthalat-Lösung durchflossener Pyrex-Kühlfinger (Schichtdicke 1 cm) verwendet. Die DS.-Kontrolle ergab, dass mit Brenner A (> 310 nm) das Ausgangsmateriai 16 stabil blieb, mit Brenner B (253,7 nm) hingegen wie unter b) umgesetzt wurde.

b) Präparative Bestrahlung mit Brenner B (direkt eingetaucht, ohne Quarzfinger). Ansatz: 409 mg 16 in 130 ml Dioxan; Bestrahlungsdauer: 2 Std. Chromatographie mit Benzol-Äther-(9:1): 22 mg 16, mit Benzol-Äther-(4:1): 284 mg 3,5-Dioxo-4 $\beta$ -methyl-17 $\beta$ -acetoxy- $\Delta^{1}$ -10(5  $\rightarrow$  4)-abeo-androsten (25)<sup>15</sup>). Smp. 182–183°. [ $\alpha$ ]<sub>D</sub> = +133° (0,57). IR.: 1250, 1602, 1683, 1720 (breit). UV.: 222 (17400). NMR.: 0,86/s CH<sub>3</sub>-18, 1,27 + 1,46/2 s CH<sub>3</sub>-19 und 4-CH<sub>3</sub>, 2,04/s 17-OCOCH<sub>3</sub>, ca. 4,6/b CH-17, 6,11+7,54/2 d/J<sub>1,2</sub> = 6 CH-2 bzw. -1.

3-Oxo-4 $\alpha$ ,  $5\alpha$ -oxido-4, 17-dimethyl-17 $\beta$ -acetoxy- $\Delta^{9}$ , <sup>11</sup>-androsten (20). Ansatz: 500 mg in 200 ml Dioxan; Bestrahlungsdauer: 8 Std. mit Brenner B. Das Rohgemisch enthielt nach DS. [Fliessmittelsystem: Benzol-Äthylacetat-(4:1)] kein 27. Chromatographie mit Benzol-Äthylacetat-(9:1): 213 mg 20 + 20 mg eines nicht weiter untersuchten Produktes [Smp. 160-161°; IR.: 1265, 1605, 1700 (Schulter), 1725; MS.:  $M^+ = 312$  ( $C_{21}H_{28}O_2$ )], das nach DS. bei der separaten Bestrahlung von 26 unter den gleichen Bedingungen nicht entstand, 128 mg 3,5-Dioxo-4 $\beta$ ,17-dimethyl-17 $\beta$ acetoxy- $\Delta^{9, 11}$ -10(5  $\rightarrow$  4)-abeo-androsten (26), Smp. 155-156° (3× krist.). [ $\alpha$ ]<sub>D</sub> = -35° (1,27). UV.: 289 (49 in Dioxan). IR.: 1260 1690 (schwach), 1730, 1745. NMR.: 0,83/s CH<sub>3</sub>-18, 1,30+1,42+ 1,44/3 s CH<sub>3</sub>-19,4- und 17-CH<sub>3</sub>, 2,00/s 17-OCOCH<sub>3</sub>, ca. 5,75/b CH-11.

C<sub>23</sub>H<sub>32</sub>O<sub>4</sub> Ber. C 74,16 H 8,66% Gef. C 74,10 H 8,65%

3-Oxo-4 $\beta$ , 5 $\beta$ -oxido-4, 17-dimethyl-17 $\beta$ -acetoxy- $\Delta^{9, 11}$ -androsten (21). Ansatz: 400 mg 21 in 400 ml Dioxan; Bestrahlungsdauer: 2 Std. mit Brenner B. Das Rohgemisch enthielt nach DS. [Fliessmittelsystem: Benzol-Äthylacetat-(4:1)] kein 26. Chromatographie mit Benzol-Äthylacetat-(9:1): 292 mg 21 + 57 mg einer nicht weiter untersuchten öligen Fraktion und Spuren des auch aus 20 erhaltenen Produktes C<sub>21</sub>H<sub>28</sub>O<sub>2</sub> + 14 mg 3,5-Dioxo-4 $\alpha$ , 17-dimethyl-17 $\beta$ -acetoxy- $\Delta^{9, 11}$ -10(5  $\rightarrow$  4)abeo-androsten (27) [3], Smp. 191° (3 $\times$  krist.). UV.: 298 (43, in Dioxan).

In den beiden oben beschriebenen Photoumsetzungen von **20** und **21** entstanden noch grössere Mengen von sehr polarem Material, das aus den Chromatogrammen erst mit Benzol-CH<sub>3</sub>OH-Gemischen ausgewaschen und nicht näher untersucht wurde.

UV.-Bestrahlung eines Epoxyketon-Gemisches 20 + 21. Ansatz: 1 g eines Gemisches 20 + 21, das durch Epoxydierung von 19 erhalten worden war, in 100 ml Dioxan; Bestrahlungsdauer: 7 Std. mit Brenner B (direkt eingetaucht, ohne Quarzfinger). Die Chromatographie des Rohgemisches lieferte mit Benzol-Äther-(9:1) 592 mg des Gemisches 20 + 21 und 154 mg 26, und mit Benzol-Äther-(2:1) 118 mg 27.

C. Konstitutionsaufklärung der Photoprodukte 23, 25 und 26 (Formelschema 4). – Methylierung von 3, 5-Dioxo-17 $\beta$ -acetoxy- $\Delta^{1}$ -10 (5  $\rightarrow$  4)-abeo-androsten (28) [3]<sup>17</sup>). Zu einer siedenden Lösung von 400 mg 28 und 800 mg K-t-Butylat in 35 ml t-Butanol wurden im Verlauf von 2 Std. unter N<sub>2</sub> und Rühren 2,3 g CH<sub>3</sub> J in 40 ml t-Butanol getropft. Nach weiteren 2 Std. liess man abkühlen, gab 10 ml H<sub>2</sub>O zu und engte im Vakuum ein. Bei der Aufarbeitung wurde die Ätherlösung zur Abtrennung des Ausgangsmaterials mit 2N NaOH ausgezogen. Chromatographie des Alkali-unlöslichen Rohproduktes mit Benzol-Äther-(4:1): 61 mg krist. 3,5-Dioxo-4 $\beta$ -methyl-17 $\beta$ hydroxy- $\Delta^{1}$ -10(5  $\rightarrow$  4)-abeo-androsten (30) [IR.: 1600, 1680, 1705, 3610], die direkt 12 Std. bei Zimmertemperatur mit je 2,5 ml Acetanhydrid und Pyridin acetyliert wurden. Filtration des Rohproduktes in CH<sub>2</sub>Cl<sub>2</sub> durch Kieselgel und zweifache Kristallisation lieferte 25, Smp. 181-182°, [ $\alpha$ ]<sub>D</sub> = +134° (0,21).

*Hydrierung von* **25**. 100 mg **25** wurden in 20 ml C<sub>2</sub>H<sub>5</sub>OH-Benzol-(1:1) mit 100 mg 5-proz. Pd-Kohle hydriert. Die vom Katalysator abfiltrierte Lösung wurde im Vakuum eingedampft. Zweifache Krist. lieferte **23**, Smp. 128–129°,  $[\alpha]_D = +15^\circ$  (0,99).

3,5-Dioxo-4 $\beta$ ,17-dimethyl-17 $\beta$ -acetoxy- $\Delta^{1}$ -10(5  $\rightarrow$  4)-abeo-androsten (31). Zu einer siedenden Lösung von 3 g 3,5-Dioxo-17 $\beta$ -acetoxy-17-methyl- $\Delta^{1}$ -10(5  $\rightarrow$  4)-abeo-androsten (29) [3]<sup>17</sup>) und 3 g

K-*t*-Butylat in 150 ml *t*-Butanol tropfte man im Verlauf von 2 Std. unter N<sub>2</sub> und Rühren 10 g CH<sub>3</sub>J in 40 ml *t*-Butanol ein. Das Gemisch wurde anschliessend noch 4 Std. zum Sieden erhitzt, darauf abgekühlt, mit CH<sub>3</sub>COOH angesäuert, im Vakuum eingeengt und aufgearbeitet. Es resultierte ein öliges Gemisch, das zur Entfernung von **29** in CH<sub>2</sub>Cl<sub>3</sub> durch neutrales Al<sub>2</sub>O<sub>3</sub> (Akt. III) filtriert wurde. Die Eluate (2,73 g) wurden mit Benzol-Äther-(2:1) chromatographiert: 1,041 g **31**, Smp. 203° (3× krist.).  $[\alpha]_D = +108°$  (0,42). UV.: 222 (9450). IR.: 1270, 1606, 1682, 1722. NMR.: 0,90/s CH<sub>3</sub>-18, 1,27+1,38+1,45/3 s CH<sub>3</sub>-19, 4- und 17-CH<sub>3</sub>, 1,97/s 17-OCOCH<sub>3</sub>, 6,10+7,53/2  $d/J_{1,2} = 6$  CH-2 bzw. -1.

3,5-Dioxo-4 $\beta$ ,17-dimethyl-17 $\beta$ -acetoxy-10 (5  $\rightarrow$  4)-abeo-androstan (32). – a) Aus 26. 30 mg 26 wurden an 30 mg PtO<sub>2</sub> in 10 ml CH<sub>3</sub>COOH hydriert, die vom Katalysator abfiltrierte Lösung eingedampft, der Rückstand in wenig Pyridin gelöst und mit einer Aufschlämmung von 30 mg CrO<sub>3</sub> in wenig Pyridin versetzt. Nach 12-stdg. Stehen bei Zimmertemperatur wurde aufgearbeitet und das Rohprodukt mit Benzol-Äthylacetat-(4:1) chromatographiert: 20 mg 32, Smp. 164° (1× krist.). [ $\alpha$ ]<sub>D</sub> == 0° (0,27). IR.: 1267, 1682 (schwach), 1723, 1742. NMR.: 0,88/s CH<sub>3</sub>-18, 1,13 (3 H) + 1,40 (6 H)/2 s CH<sub>3</sub>-19,4- und 17-CH<sub>3</sub>, 1,97/s 17-OCOCH<sub>3</sub>.

C<sub>23</sub>H<sub>34</sub>O<sub>4</sub> Ber. C 73,76 H 9,15% Gef. C 73,65 H 9,19%

b) Aus **31.** Das bei der Hydrierung von 100 mg **31** mit 200 mg 10-proz. Pd-Kohle in 20 ml  $C_2H_5OH$  resultierende Rohprodukt wurde in  $CH_2Cl_2$  durch neutrales  $Al_2O_3$  (Akt. III) filtriert. Die angefallenen Kristalle (**32**) schmolzen bei 163–164° (2× krist.).  $[\alpha]_D = +4^\circ$  (0,46).

**D.** Konfigurationsbeweis für C-4 der Photoprodukte 26 und 27 (Formelschema 5). – 3, 5-Dioxo-4 $\alpha$ , 17-dimethyl-9 $\alpha$ , 11 $\alpha$ -dihydroxy-17 $\beta$ -acetoxy-10(5  $\rightarrow$  4)-abeo-androstan (33). Eine Lösung von 860 mg 27 und 700 mg OsO<sub>4</sub> in 11 ml Benzol und 0,7 ml Pyridin beliess man 5 Tage bei Zimmertemperatur im Dunkeln, fügte dann 25 ml CH<sub>3</sub>OH, 3,8 g Na<sub>3</sub>SO<sub>3</sub> und 3,8 g NaHCO<sub>3</sub> in 37 ml H<sub>2</sub>O zu und rührte 5 Std. bei Zimmertemperatur. Darauf wurden 80 ml heisses CHCl<sub>3</sub> zugegeben, abgenutscht und der Rückstand mit viel heissem CHCl<sub>3</sub> nachgewaschen. Das Filtrat wurde mit wässeriger NaCl-Lösung geschüttelt und aufgearbeitet. Das Rohprodukt wurde mit Benzol-Äthylacetat-(1:1) chromatographiert: 202 mg 27 + 633 mg 33; Smp. 242-243° (2× krist. aus CH<sub>2</sub>Cl<sub>2</sub>-Aceton-Petroläther). [ $\alpha$ ]<sub>D</sub> = -106° (C,50). IR.: 1261, 1687 (schwach), 1721, 1742, 3505 (stark), 3602 (schwach). NMR: 0,83/s CH<sub>3</sub>-18, 1,03+1,45+1,65/3 s CH<sub>3</sub>-19, 4- und 17-CH<sub>3</sub>, 1,97/s 17-OCOCH<sub>3</sub>, 4,25/g (erst nach Zugabe von CF<sub>3</sub>COOH)/J<sub>11,12</sub> = 6 und 10,5 CH-11.

3,5-Dioxo-4 $\alpha$ , 17-dimethyl-9 $\alpha$ -hydroxy-11 $\alpha$ , 17 $\beta$ -diacetoxy-10 (5 $\rightarrow$ 4)-abeo-androstan (34). 90 mg 33 wurden 2 Std. in je 2,5 ml Acetanhydrid und Pyridin auf 90° erhitzt und die Lösung darauf im Vakuum eingedampft. Filtration des Rückstandes durch neutrales Al<sub>2</sub>O<sub>3</sub> (Akt. III) in Äther-Äthylacetat-(9:1): 50 mg 34, Smp. 222° (2× krist.). [ $\alpha$ ]<sub>D</sub> = -11° (0,36). IR.: 1261, 1687 (Schulter), 1722 1747, 3595. NMR.: 0,90/s CH<sub>3</sub>-18, 1,02+1,45+1,65/3 s CH<sub>3</sub>-19,4- und 17-CH<sub>3</sub>, 1,97/s 17-OCOCH<sub>3</sub>, 2,10/s 11-OCOCH<sub>3</sub>, 5,42/q/J<sub>11,12</sub> = 6 und 10,5 CH-11. MS.:  $M^+$  = 448.

C<sub>35</sub>H<sub>36</sub>O<sub>7</sub> Ber. C 66,96 H 8,09% Gef. C 66,93 H 8,10%

Oxydation von **26** mit OsO<sub>4</sub>. 325 mg **26** und 500 mg OsO<sub>4</sub> wurden 2 Tage bei Zimmertemperatur in 5,5 ml abs. Benzol und 0,6 ml Pyridin im Dunkeln stehengelassen. Das Reaktionsgemisch wurde darauf mit 25 ml CH<sub>3</sub>OH verdünnt, nach Zugabe einer Lösung von je 4 g NaHCO<sub>3</sub> und Na<sub>2</sub>SO<sub>3</sub> in 40 ml H<sub>2</sub>O 4 Std. bei Zimmertemperatur gerührt und durch eine Glasfilternutsche abfiltriert. Der Rückstand wurde mit heissem CHCl<sub>3</sub> gewaschen und das Gesamtfiltrat aufgearbeitet. Chromatographie des krist. Rohproduktes mit Äthylacetat: 310 mg eines mindestens binären Gemisches, vermutlich bestehend aus **35**+**37** bzw. **36** und **38**. 3× Krist. ergab ein Präparat vom Smp. 199° (125 mg). IR.: 1260, 1720 (breit), 3350, 3560. NMR.: 0,91/d/J<sub>4</sub>, 4' = 7+0,94/s+1,03/s (ca. 6,7 H), 1,18/s (ca. 2,4 H), 1,43/s (3 H), 1,98+1,99/2 s 17-OCOCH<sub>3</sub>, ca. 4,0/b CH-11.

Acetylierung des obigen krist. Rohproduktes: 239 mg Rohprodukt wurden 4 Std. bei 70° in je 5 ml Acetanhydrid und Pyridin acetyliert und das Rohgemisch mit Benzol-Äthylacetat-(2:1) chromatographiert. Man erhielt: 1. -42 mg 3-Oxo-4 $\beta$ , 17-dimethyl-5 $\alpha$ , 9 $\alpha$ -oxido-5 $\beta$ , 11 $\alpha$ , 17 $\beta$ -triacetoxy-10 (5  $\rightarrow$  4)-abeo-androstan (39), Smp. 181° (2 $\times$  krist.). [ $\alpha$ ]<sub>D</sub> = +72° (0,60). IR.: 1250, 1725, 1735. NMR.: 0,95/s CH<sub>3</sub>-18, 1,18+1,28+1,45/3 s CH<sub>3</sub>-19,4- und 17-CH<sub>3</sub>, 1,97+2,01+2,06/3 s 5-, 11- und 17-OCOCH<sub>3</sub>, 5,13/q/ $J_{11,12} = 6$  und 10,75 CH-11. MS.:  $M^+ = 490$ .

2. -174 mg Diacetoxy-lacton 40, Smp. 231° (2× krist.).  $[\alpha]_D = +14^{\circ}$  (0,39). UV.: keine Absorption > 245 nm (10<sup>-3</sup> m Lösung in Dioxan). IR.: 1260, 1720, 1745 (Schulter). NMR.: 0,84/d/J<sub>4</sub>, 4' = 7 4-CH<sub>3</sub>, 1,03+1,16+1,40/3 s CH<sub>3</sub>-18, -19 und 17-CH<sub>3</sub>, 1,96+2,03/2 s 11- und 17-OCOCH<sub>3</sub>, ca. 4,1/b CH-11. MS.:  $M^+ = 448$ .

 $3\xi$ -Hydroxy- $4\beta$ -methyl-5-oxo-17 $\beta$ -acetoxy-10 (5  $\rightarrow$  4)-abeo-androstan (41). Eine Lösung von 300 mg 23 in 20 ml Tetrahydrofuran wurde unter Rühren bei Zimmertemperatur mit 300 mg LiAl (t-C<sub>4</sub>H<sub>9</sub>O)<sub>3</sub>H versetzt und nach 1<sup>1</sup>/<sub>2</sub>stdg. Reduktionsdauer mit 5proz. wässeriger CH<sub>3</sub>COOH angesäuert. Das Reaktionsgemisch wurde in Äther aufgenommen, nacheinander mit eiskalter 5proz. Na<sub>2</sub>CO<sub>3</sub>-Lösung und ges. NaCl-Lösung gewaschen und aufgearbeitet. 3× Krist. des Rohproduktes ergab 180 mg 41<sup>18</sup>), Smp. 159–160°. [ $\alpha$ ]<sub>D</sub> = +42° (0,43). UV.: 295 (21, Dioxan). IR.: 1255, 1680 (stark), 1725, 3580. NMR.: 0,80/s CH<sub>3</sub>-18, 1,11 + 1,15/2 s CH<sub>3</sub>-19 und 4-CH<sub>3</sub>, 2,02/s 17-OCOCH<sub>3</sub>, ca. 4,3-4,75/b CH-3 und -17.

 $3\xi$ , 17 $\beta$ -Diacetoxy-4 $\beta$ -methyl-5-oxo-10 (5  $\rightarrow$  4)-abeo-androstan (42). 12 mg 41 und 4 mg p-Toluolsulfonsäure wurden in 0,5 ml (CH<sub>3</sub>CO)<sub>2</sub>O und 1 ml CH<sub>3</sub>COOH 2 Tage bei Zimmertemperatur gehalten, das Gemisch darauf mit 50 ml Äthylacetat verdünnt und durch neutrales Al<sub>2</sub>O<sub>3</sub> (Akt. I) filtriert: 11 mg krist. 42. – In einem weiteren Versuch wurden 150 mg 41 in je 2 ml (CH<sub>3</sub>CO)<sub>2</sub>O und Pyridin über Nacht bei Zimmertemperatur acetyliert, die Lösung im Vakuum eingedampft und der Rückstand in Äthylacetat durch neutrales Al<sub>2</sub>O<sub>3</sub> (Akt. I) filtriert: 126 mg 42, Smp. 155–156° (3× krist.).  $[\alpha]_D = +14^\circ$  (0,58). UV.: 288 (21, in Dioxan). IR.: 1253, 1693 (stark), 1720. NMR.: 0,81/s CH<sub>3</sub>-18, 1,13+1,24/2 s CH<sub>3</sub>-19 und 4-CH<sub>3</sub>, 2,01+2,02/2 s 3- und 17-OCOCH<sub>3</sub>, ca. 4,6/b CH-17, ca. 5,55/b CH-3. MS.:  $M^+ = 404$ .

$$C_{24}H_{36}O_5$$
 Ber. C 71,25 H 8,97% Gef. C 71,48 H 8,97%

3-Oxo-4 $\alpha$ -methyl-5 $\xi$ -hydroxy-17 $\beta$ -acetoxy-10(5  $\rightarrow$  4)-abeo-androstan (43). Ein Ansatz von 180 mg 24 und 180 mg LiAl (t-C<sub>4</sub>H<sub>9</sub>O)<sub>3</sub>H in 20 ml Tetrahydrofuran wurde  $\frac{1}{2}$  Std. wie für 23  $\rightarrow$  41 beschrieben umgesetzt und aufgearbeitet: 115 mg 43, Smp. 167–169° (3 $\times$  krist.). [ $\alpha$ ]<sub>D</sub> =  $-122^{\circ}$  (0,5). UV.: 294 (37, in Dioxan). IR.: 1253, 1722, 3520. NMR.: 0,83/s CH<sub>3</sub>-18, 1,08+1,12/2 s CH<sub>3</sub>-19 und 4-CH<sub>3</sub>, 2,04/s 17-OCOCH<sub>3</sub>, 3,45/t/J<sub>5,6</sub> = 2,5 CH-5, ca. 4,7/b CH-17.

3-0x0-4 $\alpha$ -methyl-5 $\xi$ , 17 $\beta$ -diacetoxy-10 (5  $\rightarrow$  4)-abeo-androstan (44). Acetylierungsversuche von 43 in (CH<sub>3</sub>CO)<sub>2</sub>O-Pyridin-Gemisch lieferten nur Ausgangsmaterial. Hingegen lieferte ein Ansatz von 100 mg 43 mit 25 mg *p*-Toluolsulfonsäure in 3 ml CH<sub>3</sub>COOH und 1 ml (CH<sub>3</sub>CO)<sub>2</sub>O unter den für 41  $\rightarrow$  42 beschriebenen Reaktions- und Aufarbeitungsbedingungen ein Gemisch, aus dem mittels präparativer DS. (PSC Fertigplatten Kieselgel F<sub>254</sub> MERCK; Fliessmittelsystem: Benzol-Äthylacetat 4:1) 66 mg 44 (1× krist.) isoliert wurden, Smp. 167–170° (3× krist.). [ $\alpha$ ]<sub>D</sub> = -24° (0,56). UV.: 296 (27, in Dioxan). IR.: 1255, 1730. NMR.: 0,84/s CH<sub>3</sub>-18, 1,13 + 1,18/2 s CH<sub>3</sub>-19 und 4-CH<sub>3</sub>, 1,95+2,05/2 s 5- und 17-OCOCH<sub>3</sub>, ca. 4,65/b CH-17, ca. 5,2/b CH-5. MS.:  $M^+ = 404$ (C<sub>24</sub>H<sub>36</sub>O<sub>5</sub>).

Die Elementaranalysen wurden im mikroanalytischen Laboratorium der ETH (Leitung: W.MANSER) ausgeführt. Die Aufnahme der NMR.-Spektren erfolgte in unserer Instrumentalabteilung (Leitung: Prof. W. SIMON).

<sup>&</sup>lt;sup>18</sup>) Erstmals hergestellt von R. FELIX [15].

#### SUMMARY

The photorearrangement previously described [3] of saturated and  $\Delta^1$ -unsaturated 3-oxo-4, 5-epoxy-10 $\beta$ -steroids to 3, 5-dioxo-10(5  $\rightarrow$  4)-*abeo* compounds proceeds most likely *via* a radical 1, 2-alkyl shift (Chart 1). The similar rearrangements of the related 10 $\alpha$ -epoxyketone 10 and the 4-methyl-epoxyketones 13, 15, 16, 20 and 21 to the corresponding 3, 5-diketones occurred without epimerization at the migrating carbon atom (C-10) and the site of substitution (C-4) (Chart 3). The stereochemical control of the rearrangement is in agreement with the earlier proposed mechanism of a concerted alkyl radical shift in these alicyclic systems.

Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule, Zürich

### LITERATURVERZEICHNIS

- [1] 41. Mitt.: P. Keller, Frl. G. Eggart, H. Wehrli, K. Schaffner & O. Jeger, Helv. 50, 2259 (1967).
- [2] C. LEHMANN, Diss. ETH, Zürich 1963.
- [3] H. WEHRLI, C. LEHMANN, P. KELLER, J. J. BONET, K. SCHAFFNER & O. JEGER, Helv. 49, 2218 (1966).
- [4] O. JEGER, K. SCHAFFNER & H. WEHRLI, Pure appl. Chemistry 9, 555 (1964).
- [5] C. S. MARKOS & W. REUSCH, J. Amer. chem. Soc. 89, 3363 (1967).
- [6] N.C. YANG, M. NUSSIM, M. JORGENSON & S. MUROV, Tetrahedron Letters 1964, 3657; E. BAG-GIOLINI, E.G. HERZOG, S. IWASAKI, R. SCHORTA & K. SCHAFFNER, Helv. 50, 297 (1967).
- [7] H. WEHRLI, C. LEHMANN, K. SCHAFFNER & O. JEGER, Helv. 47, 1336 (1964).
- [8] R. WENGER, H. DUTLER, H. WEHRLI, K. SCHAFFNER & O. JEGER, Helv. 45, 2420 (1962).
- [9] Vgl. C. DJERASSI, W. KLYNE, T. NORIN, G. OHLOFF & E. KLEIN, Tetrahedron 21, 163 (1965), und die dort zitierten Literaturstellen.
- [10] D.N.KIRK & V.PETROW, J. chem. Soc. 1962, 1091.
- [11] a) F. SONDHEIMER & Y.MAZUR, J. Amer. chem. Soc. 79, 2906 (1957); b) N.W. ATWATER, ibid. 79, 5315 (1957).
- [12] B. CAMERINO & B. PATELLI, II FARMACO, Ed. Sci. 11, 579 (1956); H. J. RINGOLD, E. BATRES,
  O. MANCERA & G. ROSENKRANZ, J. Org. Chemistry 21, 1432 (1956); R. H. BIBLE Jr., C. PLACEK
  & R. D. MUIR, *ibid. 22*, 607 (1957); D. J. COLLINS, J. chem. Soc. 1959, 3919.
- [13] B. CAMERINO, B. PATELLI, A. VERCELLONE & F. MEDA, Il Farmaco, Ed. Sci. 11, 586 (1956).
- [14] C. WALLING & P. S. FREDRICKS, J. Amer. chem. Soc. 84, 3326 (1962); R. J. GRITTER & T. J. WALLACE, J. org. Chemistry 26, 282 (1961).
- [15] R. FELIX, Diplomarbeit ETH, Zürich, Juni 1964.
- [16] P. DE MAYO, J.-P. PETE & M. TCHIR, J. Amer. chem. Soc. 89, 5712 (1967).